

PowerShell

A Comprehensive Guide to Windows PowerShell

Table of Contents

 Introduction
 Chapter 1: Introduction to PowerShell
 Chapter 2: PowerShell Cmdlets

 Chapter 3: PowerShell Scripts
 Chapter 4: PowerShell Strings and Quotes

 Chapter 5: Automating Tasks Using PowerShell

 Chapter 6: PowerShell Remoting

 Conclusion

Introduction

Are you looking for an easy way to simplify and automate

administration of all your Microsoft products? You can’t go wrong

with Microsoft PowerShell, one of the most powerful scripting

languages ever devised. And don’t let the term, “scripting

language” scare you off either; PowerShell is remarkably easy to

learn and has one of the most comprehensive support systems of

any programming or scripting language.

 PowerShell makes it easy to retrieve data about your system

settings, manage your services, change objects and much more;

learning it now will help you to reduce how much time you have

to spend, or waste as the case may be, on admin functions and

all without the need to purchase expensive tools or services from

elsewhere. It comes built into Windows 10, so you don’t even

have to go through the hassle of downloading and setting it up –

it’s all there, just waiting for you to use.

 In this guide, we will cover:

What PowerShell is and what its uses are

PowerShell cmdlets (commands)

PowerShell scripts

PowerShell strings and quotes

PowerShell Automation and PowerShell Remoting

 Rather than having one underlying theme running through the

book, I have set it out so that you can pick and choose the

chapter you want to read, depending on your needs at the time.

 Welcome to the wonders of Windows PowerShell.

Chapter 1: Introduction to PowerShell

Let’s start with the basics – what is PowerShell and what can it

do for you?

 These days, there are multiple ways for you to interact with a

computer system and manage it from the GUI (graphical user

interface) to the CLI (command-line interface). Some people

consider the latter as a huge backward step, back to the time of

those old-fashioned green-screened terminals. However, today we

still use it, together with web-based interfaces and API (application

programming interface) calls.

 But why have we gone back to the command line? To

understand that, you need to understand what goes into large-

scale computer system administration. Repetitive tasks take up a

lot of admin time, and it is necessary to do these as quickly and

efficiently as possible, especially with multiple systems requiring

management. Add to that the need to make sure those tasks are

done the same way every time to ensure the right results and you

start to understand why the command-line interface method is so

important. One of the most common command-line interfaces is

Microsoft PowerShell.

 What is it?

 PowerShell is an automation and scripting platform developed

by Microsoft. Built on the .NET framework, it combines an

interactive command environment with a scripting language, and

has been described by Ed Wilson, a leading resource on

PowerShell, as follows:

 “Windows PowerShell is an interactive object-oriented command

environment with scripting language features that utilizes small

programs called cmdlets to simplify configuration, administration, and

management of heterogeneous environments in both standalone and

networked typologies by utilizing standards-based remoting protocols.”

 That’s quite the definition! Let’s delve into it a bit deeper.
 Explain Object-Oriented

 In essence, an object-oriented programming language is a kind

of logic, a way of understanding how a language or platform

behaves. Everything in the language is an object. Python is

perhaps the most famous of all object-oriented programming

languages.

 An object has at least one attribute and at least one method

or function – have a look at some real-world examples:

A TV remote control – attributes include color, shape, size, how

many buttons it has, etc. Functions or methods include volume

adjustment, changing channels and turning the TV on and off.

A vehicle – attributes include current speed, location, license plate,

etc., while methods include moving, acceleration, slowing and

parking.

A dog – attributes include breed, color, energy levels and mood,

while methods include barking, sleeping, running, playing, etc.

 Explain Cmdlets

 Short for command-lets, a cmdlet is a PowerShell command

and there are lots of them. Each cmdlet is responsible for a

specific task or function, and we’ll be covering them in detail in

the next chapter. Behind a cmdlet, a lot is going on. When it is

executed, the command works with multiple objects, methods,

classes, API calls, and lots of other things, all to get its job done.

The primary advantage of using PowerShell is that there is no

need to understand all of this; the cmdlet takes care of

everything.

 To help you in using these cmdlets, PowerShell uses a naming

pattern, verb-noun, to help you understand what each one is for.

Some of the verbs you will encounter include Set, New, Get, Copy,

and Add. Putting the verbs and nouns together gives you cmdlets

like:

Get-Process

Get-Help

Get-Member

What Are PowerShell’s Uses?

PowerShell has multiple uses and the only limit is your own

creativity. The fact that its functions include scripting tools and an

interactive language means that it makes system administration

easy and provides IT professionals with a ton of flexibility.

 When you use PowerShell as a CLI for direct system

integration, you benefit from being able to connect to another

system remotely. Using a remote PowerShell session, you can

easily connect to a server that is in a different physical location

and run commands as though you were on that server. There are

lots of system tasks that can be remotely done, potentially saving

you tons of time. Not only that, administrators can run the

same command simultaneously on multiple servers, saving even

more time.

 With the PowerShell scripts, which you will also learn more

about later, you can repeatedly perform repetitive tasks. One of

PowerShell's biggest benefits is its ability to help you automate

tasks, from rolling out new servers in virtual environments to

configuring new Microsoft 365 mailboxes and everything that

comes in between.

 At their simplest, PowerShell scripts are nothing more than a

series of commands, making it easy to transition from individual

commands in a CLI to automated scripts.

What Can You Do with PowerShell?

Now you know what PowerShell is, let’s look at what you can do

with it.

 First, keep it in mind that PowerShell is not one of those

technologies that will disappear as fast as it appeared – it’s here

to stay. Although we moved on from CLIs and green screens,

adopting GUIs for just about everything, we are going back to the

old CLI methods and there are good reasons, the primary one

regarding development lifecycles.

 A GUI is typically a wrapper that runs commands or codes on

the backend when something happens – a mouse click, for

example. The code underlying it has to be written so the GUI can

do its job. By eliminating the graphical part and using the code

written in PowerShell, it is much faster to roll out updates and

changes without the need to worry about updating a GUI and

testing it, along with the code, which takes a lot of time.

 Virtually all of Microsoft’s products come with PowerShell

integrated; indeed, some actions cannot be done with a GUI, only

with PowerShell, including some actions in Server 2016 and

Microsoft 365. And not only is PowerShell vital for some tasks,

being able to use automation makes it worth any IT professional

learning and understanding it.

 When you fully understand what PowerShell is capable of, it

opens up a lot of doors. From automating basic, repetitive tasks

to writing advanced scripts, PowerShell offers plenty of functions

and timesaving abilities.

 In the next few chapters, we will take a deeper dive into
PowerShell and what you can do with it, starting with an in-depth

look at PowerShell cmdlets.

Chapter 2: PowerShell Cmdlets

Developers love PowerShell because of the functionality, power,

and flexibility it gives the Windows Command prompt. However,

although it is relatively simple to learn, there is still a learning

curve to it.

 PowerShell runs on commands, known as cmdlets. These are

what drive its functional capabilities and give it the power it has

to make your life easier. This chapter will go over some of the

most important cmdlets for anyone just getting started in

PowerShell.

Basic PowerShell Cmdlets

These are the basic cmdlets that help you gain information, draw

up basic reports, and configure security.

Get-Command

 This is one of the easiest reference cmdlets to use, giving you

a list of all the commands you can use in the current session.

To use it, type this command:

 Get-Command

 You will see something that looks a bit like this:

 CommandType Name Definition

—————- ——

 —————

Cmdlet Add-Content [-Path]

 Cmdlet Add-History [[-InputObject] ...

 Cmdlet Add-Member [-MemberType]

Get-Help

 This is an essential command for any PowerShell user, and it

gives you easy access to help about the commands available to

you in your current session. For example, you could type the

following command:

 Get-Help [[-Name]] [-Path] [-Category] [-Component]

 [-Functionality] [-Role] [-Examples] []

Set-ExecutionPolicy

 By default, scripting is disabled by Microsoft to stop malicious

scripts from being executed in PowerShell. Obviously, developers

need to be able to write scripts and execute them, so this

command allows them to control the security that surrounds

PowerShell scripts. There are four security levels available:

Restricted – the default level that stops scripts from being able to

run and only allows commands to be entered interactively.

All Signed – this level enables scripts to run ONLY if a

trustworthy publisher has signed them.

Remote Signed – this level enables locally created scripts to run.

Remotely created scripts can run ONLY if a reputable publisher

has signed them.

Unrestricted – this level removes the restrictions from the policy

and enables all scripts to run.

 If you are not familiar with the environment you are working

in, you can use the following command to see what the current

execution policy is:

 Get-ExecutionPolicy

Get-Service

 If you want to know the installed services on your system, you

can get that information by using this command:

 Get-Service
 You should see something like this on your screen:

 Status Name DisplayName

——————————-

Running Adobe Active File Monitor V4

 Stopped Alerter
 Running ALG Application Layer Gateway Service
 Stopped AppMgmt Application Management

 Running ASChannel Local Communication Channel

 If you are looking for a specific service, add the -Name switch

and the service name; Windows will display the service state. You

can also use the built-in filtering abilities to return a subset of

those services installed. If you were to use the following example,

you would see the data from the Get-Service command that was

piped to the cmdlet called Where-Object; this will then filter out

all services other than those that have stopped:

 Get-Service | Where-Object {$_.status -eq "stopped"}

ConvertTo-HTML

 This one is pretty self-explanatory; it allows you to extract data
for use in reports or send it on to someone else. Using it

requires that the output from another command be piped to

ConvertTo-HTML and the -Property switch to be used for

specifying the output properties to go in the HTML file. A file

name is also required.

 As an example, the code below will result in an HTML page

being created and listing the current console’s PowerShell aliases:

 PS C:\> get-alias | convertto-html > aliases.htm

 PS C:\> invoke-item aliases.htm

 You can also use the Export-CSV cmdlet to export the data into

a .CSV file. To do this, specify the required properties by using

the Select-Object command.

Get-EventLog

 PowerShell makes it easy to parse the event logs on your

machine with the Get-EventLog cmdlet. This one has a few

parameters you can use, for example, if you wanted to see a

specific log, you would use the -Log switch with the log file

name. The following command will let you see the Application

log:

 Get-EventLog -Log "Application"
 Some of the other parameters you can use are:

-Verbose

-Debug

-ErrorAction

-ErrorVariable

-WarningAction

-WarningVariable

-OutBuffer

-OutVariable

Get-Process

 Sometimes, in the same way that you can get a list of all the

available services, you can also get a list of the processes

currently running on your system using the Get-Process command.

 If you have processes that are not responding or have frozen,
the Stop-Process command will let you stop them. If you know

that something is holding you up but are not sure what, use Get-

Process to identify it and then Stop-Process to stop it.

 For example, if you wanted to stop Notepad running on your

system, you would use the following command:

 Stop-Process -processname notepad

 Wildcard characters can also be used. In the following example,

all Notepad instances will be terminated along with any process

that starts with note:

 Stop-Process -processname note*

Clear-History

 If you want to clear your command history of all entries, this

is the cmdlet to do it. This command can be used for deleting

specific commands too. For example, if you wanted to delete all

commands that contained ‘help’ or ended in ‘command’ you

would use the following command:

 PS C:\> Clear-History -Command *help*, *command

 You can also add entries to your current session using the
Add-History cmdlet.

Where-Object

 This is one of the most important of all the PowerShell

cmdlets, allowing you to pass a dataset down the pipeline to be

filtered:

 Get-Service | Where-Object {$_.Status -eq 'Running'}

 The output should look something like this:

 Status Name DisplayName

——————————-

Running AdobeARMservice Adobe Acrobat Update Service

 Running AppHostSvc Application Host Helper Service

 Running Appinfo Application Information

 Running AudioEndpointBu... Windows Audio Endpoint Builder

 Running Audiosrv Windows Audio

 Running BFE Base Filtering Engine
 Running BITS Background Intelligent Transfer Ser...
 Running BrokerInfrastru... Background Tasks Infrastructure Ser...
 Running Browser Computer Browser

 Running CDPSvc Connected Devices Platform Service

Set-AuthenticodeSignature

 This cmdlet allows you to keep any work in production secure

and disable it from being modified by adding an Authenticode

signature to your file or script:

 > Set-AuthenticodeSignature somescript.ps1 @(Get-ChildItem

cert:\CurrentUser\My -codesigning)[0] -IncludeChain "All" -

TimestampServer

PowerShell Cmdlets to Get Things Done

PowerShell is great for productivity, providing you with these

commands to let you get things done:

ForEach-Object

 This cmdlet will perform an operation against each object in a

specific group containing input objects. Many cmdlets will work

with all objects contained in a collection, but the ForEach-Object

cmdlet is required for when you want to apply specific formatting

to every object or make some other modification. As an example,

you can use the following commands to display process names

rendered in cyan:

 Get-Process | Write-Host $_.name -foregroundcolor cyan

 However, that would throw up this error message:

 At line:1 char:25
 + get-process | write-host <<<< $_.name -foregroundcolor cyan

Write-Host : The input object cannot be bound to any parameters

for the command either because the command does not take

pipeline input or the input and its properties do not match any of

the parameters that take pipeline input.

 Why? Because the Write-Host cmdlet doesn’t know what you

want to do with the data sent via the pipeline. So, the ForEach-

object cmdlet is used to solve this:

 Get-Process | ForEach-Object {Write-Host $_.name -

foregroundcolor cyan}

Clear-Content

 This cmdlet allows you to delete an item’s content without

deleting the item:

 Clear-Content C:\Temp\TestFile.txt

 The same command lets you clear the contents from any files

with a specific extension. For example, if you wanted to remove

the contents of any file with a .txt extension, you would use the

following code:

 Clear-Content -path * -filter *.TXT –force

Checkpoint-Computer

 Suppose you were running a risky kind of experiment or

needed to make some significant changes. You would use this

cmdlet to set a restore point. However, you can only do this once

in any 24-hour period with this command:

 PS C:\> Checkpoint-Computer -Description "My 2nd checkpoint"

-RestorePointType "Modify_Settings"

 PS C:\> Get-ComputerRestorePoint | format-list

 __GENUS : 2

 __CLASS : SystemRestore

 __SUPERCLASS :
 __DYNASTY : SystemRestore

 __RELPATH : SystemRestore.SequenceNumber=59

 __PROPERTY_COUNT : 5

 __DERIVATION : {}

 __SERVER : CLIENT2

 __NAMESPACE : root\default

 __PATH :

\\CLIENT2\root\default:SystemRestore.SequenceNumber=59

 CreationTime : 20120202180537.316029-000

 Description : My 2nd checkpoint

 EventType : 100
 RestorePointType : 12
 SequenceNumber : 59

Compare-Object

 Sometimes, you want to be able to directly compare two

objects, and this cmdlet will let you do that and will also provide

a report on the differences between them:

 PS G:\lee\tools> cd c:\temp

 PS C:\temp> $set1 = "A","B","C"

 PS C:\temp> $set2 = "C","D","E"

 PS C:\temp> Compare-Object $set1 $set2

 InputObject SideIndicator

————-———————-

D =>

 E =>
 A <=
 B <=

ConvertFrom-StringData

 This cmdlet will let you convert a string that has at least one

value pair into a hash table. As an example, you could use this

command:

 $settings = $TextData | ConvertFrom-StringData

 You can use this cmdlet in many situations, such as when you

want to save a script’s settings so that others can edit them

without having to go directly into the script code.

ConvertTo-SecureString

 This cmdlet will let you convert a standard string that has been

encrypted, or some plain text, into secure strings. You can use

this together with Read-Host and ConvertFrom-SecureString:

 ConvertTo-SecureString [-String] SomeString

 ConvertTo-SecureString [-String] SomeString [-SecureKey

SecureString] ConvertTo-SecureString [-String] SomeString [-Key

Byte[]] ConvertTo-SecureString [-String] SomeString [-AsPlainText] [-

Force]

ConvertTo-XML

 You can use this cmdlet to create XML-based object

representations, a process known as serialization and useful for

when you want to save data for reuse later on. Be aware that

your expression must write the objects to the pipeline; if you use

Write-Host, you can’t write to the pipeline and thus those objects

cannot be serialized. Here’s an example of the code in use:

 Get-Service wuauserv -ComputerName chi-dc04,chi-p50,chi-core01

|

 Export-Clixml -Path c:\work\wu.xml

 In this example, we used the Export-Clixml cmdlet, which is

ideal for lots of purposes. That cmdlet will convert an expression’s

output into XML and place it into a file.

New-AppLockerPolicy

 You can use the New-AppLockerPolicy cmdlet to create new

Applocker policies from rule creation options such as file

information lists. There are five separate cmdlets that allow

interaction with Applocker:

 the required information for creating AppLocker rules from a

list of files or the event log.

 to retrieve a local, effective, or a domain AppLocker policy.

 mentioned, this cmdlet is used for creating new AppLocker

policies.

 the AppLocker policy for a specified group policy object.
 to determine if a user or group of users will be able to

perform certain actions based on the policy.

New-ItemProperty

 This cmdlet allows you to create new properties for items and

set their values. It is used for creating registry values and data,

for example registry key properties, and changing them.

New-Object

 You can use this cmdlet to create instances of COM

(Component Object Model) or .NET Framework objects. The

following example shows you how to use it for creating a new

object, storing it in a variable, and then piping it to the Add-

Member command. This will then add the specified methods or

properties:

 $ourObject = New-Object -TypeName psobject

 $ourObject | Add-Member -MemberType NoteProperty -Name

ComputerName -Value $computerInfo.Name

 $ourObject | Add-Member -MemberType NoteProperty -Name

OS -Value $osInfo.Caption

 $ourObject | Add-Member -MemberType NoteProperty -Name

'OS Version' -Value $("$($osInfo.Version) Build

$($osInfo.BuildNumber)")

 $ourObject | Add-Member -MemberType NoteProperty -Name

Domain -Value $computerInfo.Domain

 $ourObject | Add-Member -MemberType NoteProperty -Name

Workgroup -Value $computerInfo.Workgroup

 $ourObject | Add-Member -MemberType NoteProperty -Name

DomainJoined -Value $computerInfo.Workgroup

 $ourObject | Add-Member -MemberType NoteProperty -Name

Disks -Value $diskInfo

 $ourObject | Add-Member -MemberType NoteProperty -Name

AdminPasswordStatus -Value $adminPasswordStatus

 $ourObject | Add-Member -MemberType NoteProperty -Name

ThermalState -Value $thermalState

New-WebServiceProxy

 This is another useful cmdlet for creating web service proxy

objects for using the web service within PowerShell. It’s a really

useful cmdlet for developers as it negates the need for loads of

complicated code – all they have to do is call on an already

existing service to do the same job. Have a look at an example:

 $url = http://.azurewebsites.net/CreateSite.asmx

 $proxy = New-WebServiceProxy $url

 $spAccount = ""

 $spPassword = Read-Host -Prompt "Enter password" –

AsSecureString

 $projectGuid = ""
 $createOneNote = $false

 And the following code shows you a list of all the methods

available:

 $proxy | gm -memberType Method

New-WSManInstance

 This works in much the same way as the New-WebServiceProxy

in that it lets you create new management resource instances:

 New-WSManInstance winrm/config/Listener

 -SelectorSet @{Address="*";Transport="HTTPS"}

 -ValueSet
@{Hostname="Test01";CertificateThumbprint="01F7EB07A4531750D92

0CE6A588BF5"}

New-WsManSessionOption

 This cmdlet allows you the creation of new management

session hash tables. These are then used as input parameters to

a few other cmdlets for WS-Management, including:

 Get-WSManInstance

 Set-WSManInstance

 Invoke-WSManAction

 Connect-WSMan

 The syntax for this cmdlet is:

 New-WSManSessionOption [-NoEncryption] [-OperationTimeout] [-

ProxyAccessType] [-ProxyAuthentication] [-ProxyCredential] [-

SkipCACheck] [-SkipCNCheck] [-SkipRevocationCheck] [-SPNPort] [-

UseUTF16] []

Select-Object

 This cmdlet lets you choose specific properties of one or a

group of objects. It can also help you choose unique objects from

arrays or specific objects from the start or the end of the array:

 PS > Get-Process | Sort-Object name -Descending | Select-

Object -Index 0,1,2,3,4

 Other cmdlets that work in much the same way are:

 Select-String: Finds text in strings or files.
 Select-XML: Finds text in an XML string or document.

Set-Alias

 This is one of the best productivity-enhancing cmdlets, allowing

you to set aliases for specific command elements or cmdlets in a

current session. This is much like a keyboard shortcut and

enables faster working. In this example, we are setting Notepad to

an alias of np:

 New-Alias np c:\windows\system32\notepad.exe

Set-StrictMode

 This cmdlet is used for establishing coding rules and enforcing

them in expressions, script blocks and scripts. It’s a great cmdlet

to enforce the quality of your code and stops you writing bad

code when you are tired. There are two parameters that can be

used - -Version and -Off. The former, -Version has three potential

values:

 Version 1.0 stops you from using any variable that you haven’t

initialized

 Version 2.0 stops you using uninitialized variables and stops
you from calling a function such as a method, non-existent object

properties, and stops you from creating unnamed variables

 Version Latest chooses the latest version of StrictMode to use,

a good option because the latest version is always used no

matter what PowerShell version you are running

Wait-Job

 This cmdlet stops the command prompt until there are no

more background jobs running. It will not show you any output

from the jobs, but you can use it with Receive-Job. And thanks to

-Jobs, you can also use multithreading in PowerShell:

 ### Start-MultiThread.ps1 ###

 $Computers = @("Computer1","Computer2","Computer3")

 #Start all jobs
 ForEach($Computer in $Computers){

 Start-Job -FilePath c:ScriptGet-OperatingSystem.ps1 -ArgumentList

$Computer

 }
 #Wait for all jobs

 Get-Job | Wait-Job

 #Get all job results
 Get-Job | Receive-Job | Out-GridView

 ### Start-MultiThread.ps1 ###

 $Computers = @("Computer1","Computer2","Computer3")

 #Start all jobs
 ForEach($Computer in $Computers){

 Start-Job -FilePath c:ScriptGet-OperatingSystem.ps1 -ArgumentList

$Computer

 }
 #Wait for all jobs

 Get-Job | Wait-Job

 #Get all job results
 Get-Job | Receive-Job | Out-GridView

Write-Progress

 Everyone loves status bars and this cmdlet shows you one in

the command window, allowing you to monitor what you are

doing. The example below shows how to get a full bar and the

runtime strings:

 $TotalSteps = 4
 $Step = 1
 $StepText = "Setting Initial Variables"
 $StatusText = '"Step
$($Step.ToString().PadLeft($TotalSteps.Count.ToString().Length)) of

$TotalSteps | $StepText"'

 $StatusBlock = [ScriptBlock]::Create($StatusText)
 $Task = "Creating Progress Bar Script Block for Groups"
 Write-Progress -Id $Id -Activity $Activity -Status (& $StatusBlock)

-CurrentOperation $Task -PercentComplete ($Step / $TotalSteps *

100)

PowerShell Cmdlets for Monitoring Performance, Testing

and Debugging

To finish off, we have some cmdlets that developers will find

useful for troubleshooting their scripts, testing them and

debugging.

Debug-Process

 All developers like to debug. This cmdlet allows you to easily

debug your scripts. Plus, you can use Debug-Job to debug a job,

and you can use a cmdlet called Wait-Debugger, or you can set

breakpoints:

 PS C:\> $job = Start-Job -ScriptBlock { Set-PSBreakpoint
C:\DebugDemos\MyJobDemo1.ps1 -Line 8;

C:\DebugDemos\MyJobDemo1.ps1 }

 PS C:\> $job
 PS C:\> Debug-Job $job

Disable-PSBreakpoint

 This cmdlet allows you to eliminate previously set breakpoints

in the current console. The syntax is:

 Disable-PSBreakpoint [-Breakpoint] [-PassThru] [-Confirm] [-WhatIf]

[]

 Disable-PSBreakpoint [-Id] [-PassThru] [-Confirm] [-WhatIf] []

 You can also enable breakpoints by using the Enable-
PSBreakpoint cmdlet.

Get-Counter

 This cmdlet will use real-time counter data from the Windows

OS performance monitoring system and can obtain the data from

remote or local computers at specified sample intervals. The

example below shows you how to set a counter with a maximum

specified sample:

 PS C:\> Get-Counter -Counter "\Processor(_Total)\% Processor

Time" -SampleInterval 2 -MaxSamples 3

 And the code below lets you get data from more than one

computer:

 The first command saves the **Disk Reads/sec** counter path

in the $DiskReads variable.

 PS C:\> $DiskReads = "\LogicalDisk(C:)\Disk Reads/sec"
 The next command is using the pipeline operator (|) to pass

the $DiskReads variable counter path to the cmdlet called **Get-

Counter**. The output is limited to 10 samples using the

MaxSamples parameter.

 PS C:\> $DiskReads | Get-Counter -Computer Server01, Server02

-MaxSamples 10

Export-Counter

 This one is used for exporting PerformanceCounterSampleSet

objects. They are exported as counter log files and there are two

available properties:

 and sets the counter data.
 and sets date and time of the sample data.

 There are also multiple methods available for inheritance from

Object:

 Equals(Object)

 Finalize()
 GetHashCode()

 GetType()

 MemberwiseClone()

 ToString()
 The command below, for example, collects the Processor Time

data using Export-Counter and puts it in a .blg file:

 Get-Counter "\Processor(*)\% Processor Time" | Export-Counter

-Path C:\Temp\PerfData.blg

Test-Path

 This cmdlet allows you to check a specified path to see if

specific items are there. For example, if you wanted to use a

particular command on a file, you might want to make sure the

file actually exists, so you don’t get an error message:

 Test-Path C:\Scripts\Archive
 There are two possible results – True if the folder is there,
False, if it isn’t.

Get-WinEvent

 Get-WinEvent lets you see event logs in Windows. If you want

to see all the available logs, use the following command:

 Get-WinEvent -ListLog *

 If you then wanted to look deeper at one log in particular, you
can replace the * sign with the log name. To see all details, you

would then pipe the output of this to Format-List:

 Get-WinEvent -ListLog $logname | fl *

 And to see all events in a specified log, use:
 Get-WinEvent -LogName System

Invoke-TroubleshootingPack

 PowerShell contains a series of assemblies and scripts collected

together in troubleshooting packs. These help to you to

troubleshoot system problems, diagnose them and repair them. To

see all the packs, use the code below:

 C:\Windows\Diagnostics\System

 The code below can be run to see all the packs on the current
system:

 Get-ChildItem C:\Windows\Diagnostic\System

 Then, using an elevated window, use the command below to

run a troubleshooting pack:

 Invoke-TroubleshootingPack (Get-TroubleshootingPack
 C:\Windows\diagnostics\system\networking)

Measure-Command

 You can also time PowerShell operations using the Measure-

Command cmdlet. It lets you measure the length of time a script

or script block runs, and you can see an example below:

 Measure-Command { Mount-SPContentDatabase –Name

wss_content_portal –WebApplication http://portal.contoso.com }

 You will get a TimeSpan object as the output, containing

several properties like Second, Minute, Hour, etc. and the output

can be tailored to how you want it.

Measure-Object

 If you want to know the size of a specific object, use the
Measure-Object cmdlet. This will tell you all the numeric

properties of the object, including lines, words and characters in

string objects, for example, a text file.

 All you have to do is provide the name and what measurement

type you want performed. There are also parameters to include:

 adds values
 calculates the average value
 finds the minimum value

 finds the maximum value

 As an example, the following command sums the property

values for VirtualMemorySize for the process objects:

 Get-Process | measure VirtualMemorySize -Sum

New-Event

 As you may have guessed, this cmdlet lets you create new

events. You can also use New-EventLog to create event logs and

event sources on remote or local computers. If you have a

PowerShell-supported automation engine, it makes sense to set

event logs up that log every PowerShell message. The following

example shows you how Custom Logging is implemented in Event

Viewer:

 First, create the event log, LogName:

 New-EventLog -LogName Troubleshooting_Log -Source

FalloutApp

 Then, to have messages sent to it, the following should be run

with the cmdlet called Write-Log:

 Write-EventLog -log Troubleshooting_Log -source FalloutApp -

EntryType Information -eventID 10 -Message "FalloutApp has been

successfully installed"

Receive-Job

 If you want to know the results of any background jobs in your
current session, this cmdlet will help you get them. Typically, you

use this after starting a job using Start-Job and you want the

results of that job:

 Receive-Job -Name HighMemProcess

Register-EngineEvent

 You can use this cmdlet to subscribe to any events the

PowerShell engine generates with the New-Event cmdlet. As an

example, you can use the command below to subscribe when the

current session has exited, and the information will be saved to a

log file:

 Register-EngineEvent PowerShell.Exiting
 -Action {"PowerShell exited at " + (Get-Date) | Out-File

c:\log.txt -Append}

Register-ObjectEvent

 This is much like the Register-EngineEvent cmdlet but, this

time, you are subscribing to .Net Framework Object events. Have

a look at the following example:

 Register-ObjectEvent -InputObject $MyObject -EventName

OnTransferProgress -SourceIdentifier Scp.OnTransferProgress `

 -Action {$Global:MCDPtotalBytes = $args[3];

$Global:MCDPtransferredBytes = $args[2]}

 Register-ObjectEvent -InputObject $MyObject -EventName

OnTransferEnd `

 -SourceIdentifier Scp.OnTransferEnd -Action

{$Global:MCDPGetDone = $True}

 A couple more Register cmdlets that could be useful are:

 Register-PSSessionConfiguration: this create a session
configuration and registers it.

 Register-WmiEvent: This subscribes to specified WMI events.

Remove-Event

 You would use this cmdlet when you want an event removed.

If you want an event log removed, you would need to use the

Remove-EventLog cmdlet – this deletes the log, or alternatively,

you can use it to unregister an event source. Also, you can cancel

a subscription to an event using Unregister-Event without deleting

the event from the queue.

Set-PSDebug

 You would use this cmdlet to enable or disable the debugging

features, set the trace levels, and turn StrictMode on or off. When

you use this cmdlet at the start of your script, following the

param() statement if you used one. It will eliminate errors on

scripts where there is little troubleshooting information supplied by

PowerShell. Have a look at this example:

 Set-PSDebug -Strict
 $Succeeded = test-path
C:\ProjectX\Src\BuiltComponents\Release\app.exe

 if ($Succeeded) {
 "yeah"
 }
 else {
 "doh"
 }
 PS C:\Temp> .\foo.ps1

 The variable $Succeeded cannot be retrieved because it has not
been set yet.

 At C:\Temp\foo.ps1:6 char:14

 + if ($Succeeded) <<<< {

Start-Sleep

 If you want activity in a session or script suspended, this is
the cmdlet to use. It will stop the activity for the length of time

you specify:

 Start-Sleep -Seconds xxx
 Start-Sleep -Milliseconds xxx

 If, on the other hand, you wanted running services paused, you
would need to use the Suspend-Service cmdlet.

Tee-Object

 The Tee-Object cmdlet is ideal for seeing command outputs

when you want to analyze the quality or performance of your

code. The cmdlet will store the output in a separate variable or

file and, if it is the last one in a pipeline, it will display it on the

console. If it isn’t, it gets sent down the pipeline. The syntax is:

 Tee-Object [-FilePath] [-InputObject] []

 Tee-Object -Variable [-InputObject] []

Test-AppLockerPolicy

 This cmdlet will help you evaluate if a specified input file is

allowed to run for a user. The decision is based on the

AppLocker policy for the file and/or user:

 Test-AppLockerPolicy [-PolicyObject] -Path [-User] [-Filter >] []

 Test-AppLockerPolicy [-XMLPolicy] -Path [-User] [-Filter] []

Test-ComputerSecureChannel

 You can test connections between local computers and their

domains and repair them if needed using this cmdlet. Before we

had this command, the computer would need to be removed from

the domain and then reconnected to try to establish a

relationship. This cmdlet can save IT professionals a good deal of

time. Local administrators can run this command:

 Test-ComputerSecureChannel –credential

WINDOWSITPRO\Administrator –Repair

Test-Path

 This cmdlet will help you see if all path elements exist, i.e.

handling any errors before they can happen. The result is one of

two outputs – True or False:

 PS C:\> test-path c:\
 True
 PS C:\> test-path z:\foo
 False

Trace-Command

 This cmdlet is used for configuring and starting traces of given

expressions or commands. You will also need Get-TraceSource to

find specific names with the use of wildcards:

 PS> Get-TraceSource -Name *param*

 The output can be filtered depending on the pattern you want
and, once a potential trace name has been identified, Trace-

Command will tell you what you want to know. Have a look at

the example below:

 [CmdletBinding(DefaultParameterSetName = 'Host')]

 param (

 # ScriptBlock that will be traced.
 [Parameter(

 ValueFromPipeline = $true,

 Mandatory = $true,

 HelpMessage = 'Expression to be traced'

)]
 [ScriptBlock]$Expression,

 # Name of the Trace Source(s) to be traced.

 [Parameter(

 Mandatory = $true,

 HelpMessage = 'Name of trace, see Get-TraceSource for valid

values'

)]
 [ValidateScript({
 Get-TraceSource -Name $_ -ErrorAction Stop

 })]
 [string[]]$Name,

 # Option to leave only trace information

 # without actual expression results.
 [switch]$Quiet,

 # Path to file. If specified - trace will be sent to file instead of
host.

 [Parameter(ParameterSetName = 'File')]

 [ValidateScript({
 Test-Path $_ -IsValid
 })]
 [string]$FilePath
)
 begin {
 if ($FilePath) {
 # assume we want to overwrite trace file

 $PSBoundParameters.Force = $true

 } else {
 $PSBoundParameters.PSHost = $true

 }
 if ($Quiet) {

 $Out = Get-Command Out-Null

 $PSBoundParameters.Remove('Quiet') | Out-Null

 } else {
 $Out = Get-Command Out-Default

 }
 }
 process {
 Trace-Command @PSBoundParameters | & $Out

 }
 }
 PS> New-Alias -Name tre -Value Trace-Expression

 PS> Export-ModuleMember -Function * -Alias *

Write-Debug

 Our last useful cmdlet lets you write debug messages to your

console. By default, adding this to a script or function will not do

anything. It is waiting until $DebugPreference is modified or the -

debug switch is activated when a script or function is called. If

you set $DebugPreference to ‘inquire’ if you activate the switch, a

breakpoint is created, allowing you to get into debug mode easily.

Here’s an example:

 function Get-FilewithDebug
 {
 [cmdletbinding()]

 Param
 (
 [parameter(Mandatory)]

 [string]$path

)
 Write-Verbose "Starting script"

 Write-Debug "`$path is: $path"

 $return = Get-ChildItem -Path $path -Filter *.exe -Recurse -Force

 Write-Debug "`$return has $($return.count) items"

 $return
 }
 When you run that with -debug, you get the following:

 [C:\git] > Get-FilewithDebug -path C:\Users\jmorg_000\ -Debug

 DEBUG: $path is: C:\Users\jmorg_000\

 Confirm
 Continue with this operation?
 [Y] Yes [A] Yes to All [H] Halt Command [S] Suspend [?] Help

(default is "Y")

 While there are many more cmdlets, these are the most

common and most useful ones. In the next chapter, we look at

how to use these to put a script together.

Chapter 3: PowerShell Scripts

Before we look into scripts, let’s get a bit more background on

the PowerShell language. It was developed by Microsoft as a high-

level programming syntax with the purpose of allowing system

admins the opportunity to automate their configurations and

actions. While it is based on the standards for object-oriented

languages, it is only for use in Windows, is underpinned by C#

code and belongs to the .NET framework. That said, you don’t

need to know C# to understand PowerShell.

 Perhaps the best comparison in terms of languages is Perl,

commonly used for much the same functions in Linux. The

PowerShell language is made up of functions known as cmdlets,

each of which has at least one defined action and can return

.NET objects.

What is the PowerShell ISE?

When you write a PowerShell cmdlet, you can do it in any word

processing program or text editor, but in the latest Windows 10

versions you will find the PowerShell Integrated Scripting

Environment (ISE), which is designed to make it easier to script.

 When you first open the ISE, it will look much like a

command-line interface with a prompt. However, it is packed with

support and functionality to help you write your scripts. You will

find a list of common cmdlets and modules is easily accessible

and, when you begin writing scripts, a handy debugging tool lets

you test your scripts, find any problems, and repair them.

 Like most coding environments, the ISE can be customized to

your requirements – you can change the color, theme, font, and

much more. When you create a new script, the ISE will save it

with the .psi extension, indicating it can only run in a PowerShell

environment. If you are familiar with the Windows command

prompt, the PowerShell scripting language will be easier to use,

with data piping, objects, ping, and more, working in much the

same way. However, the main difference is that the PowerShell

syntax is much easier to read and understand than Windows

command prompt commands.

Features and Uses of PowerShell

Windows PowerShell has many uses, but the primary benefit for

the beginner is that scripts can be used for system automation, in

terms of:

Working with large file batches, to automate system backups or

have access control over multiple files at the same time.

PowerShell Scripts also help administrators to add users and

remove them. With one carefully written script, the processes of

updating the security software, adding a network drive and giving

new users permission to access specific files can easily be

automated.

 All of this requires that you use multiple PowerShell features,

including aliases and cmdlets, which we’ll talk about shortly.

 How to Launch PowerShell

 The easiest way to launch PowerShell is to use the search bar.
Simply go to the taskbar, type in powershell and click the result.

If you want to run it as an administrator, right-click on the result

and then click on Run as Administrator.

Before You Run a PowerShell Script

We’re going to be creating a script or two in this chapter and

they will be saved as .ps1 files. You will not be able to run these

by double-clicking on them, as Windows won’t allow it by default.

Why? Because poor or malicious scripts can do a lot of damage

to a system, even accidentally. Instead, right-click the file and click

on the option to Run with PowerShell.

 However, if this is your first time using PowerShell, you might

find this doesn’t work. A system-wide policy stops scripts from

executing so, to find out what it is, open the ISE and type the

following at the prompt:

 Get-ExecutionPolicy
 You should see one of these on your screen:

Restricted – scripts cannot be executed. This is default and must

be changed.

AllSigned – the only scripts that can run are those that a trusted

developer has signed. Before you can run any script, you will get

a prompt.

RemoteSigned – any script can be run but you should not have

this option enabled.

 The policy setting must be changed before you can run any

scripts, so set it to RemoteSigned. Open the command prompt

and run this command:

 Set-ExecutionPolicy RemoteSigned

 Now you can start.

Finding PowerShell Commands

PowerShell is incredibly powerful, but behind that is a significant

level of complexity. You cannot possibly remember every single

command, filter, flag, alias, and more, and PowerShell doesn’t

expect you to. The editor contains a ton of useful tools that help

you deal with this, and the following are the commonly used

ones:

Tab Completion – you do not need to remember every command

name or how to spell them; if you type get-c at the prompt and

start pressing the tab key, you will see the commands that start

with the letter or letters that you started inputting. You can do

this at any time during a command, not just with command

names but with paths and flags too.

Get-Command – tab completion is great, but it can only work if

you know which command name you want. If you don’t know the

name, you need to use a different command: Get-Command. Be

aware that commands have a VERB-NOUN syntax and typically

start with SET, GET, READ, WRITE, and so on. The noun part of

the syntax is things like servers, files, things from applications,

and network. Get-Command will show you all the available

commands on your current system.

Command Syntax – the Perl language was once described as

looking much like “executable line noise” - a useful tool with a

syntax that is quite opaque and that has a high learning curve.

The Windows command prompt, although not quite the same is

very near to it. Think about this - a common job is looking in a

directory for all items that start with a string of ‘Foo’. In Perl,

you’ll see the following:

 CMD: FOR /D /r %G in (“Foo*”) DO @Echo %G

 Breaking this down:

FOR and DO – this tells us it is a loop

/D Flag – this tells us that it is for Directories

/r Flag – tells us that “Files Rooted at Path”

‘in’ – designates the pattern defining the files for looping over

@Echo – tells the script to write each loop’s results

%G – is an ‘implicit parameter’ – the only reason it is known as

‘G’ is that the a, d, f, n, o, s, t and x pathname format letters

have already been used by other developers, and G provides the

biggest set of “unused” letters that can be used for returned

variables – G, H, I, J, K, L and M – a not too pretty hack.

 Now let’s look at the equivalent in PowerShell:

 Get-ChildItem -Path C:\Example -Filter ‘Foo*’

 Much neater, yes? The output has much the same functionality,

but it is so much easier to understand. Something that may not

be too obvious is the wildcard - *. This was in both the examples

and is telling the command to look for items beginning with

‘Foo”, regardless of what they end with.

 And it gets better. Let’s say that you wanted to identify files in
the path and not directories. You could mess around with the

command-line version if you like, but it is much easier to use

PowerShell.

Running a PowerShell Script

You can make a script in two primary ways:

This is familiar to those who use the Windows Command Line –

writing your scripts in Notepad. Open a new file in Notepad and

write in the following:

 Write-Host “Hello World!”

 Save it with the name, FirstScript.ps1. That script can be called

upon via PowerShell with the following command:

 & "X:\FirstScript.ps1"
 The output will show up in the PowerShell console.

This is a more powerful way – using the PowerShell ISE which

lets you run and debug scripts in the GUI. The ISE also provides

useful features such as multiline editing, syntax highlighting,

selective execution, tab completion and many more. And you can

open more than one script window at once, which is useful

considering some of your scripts may need to call on others.

 You might think it’s a bit much right now, but you should

consider using the ISE from the start. This will give you time to

get used to it before you work on complex scripts.

Examples of Basic PowerShell Scripts

Now you are ready to start writing some PowerShell scripts.

 Example Script One – Get the Date

 This is a nice simple script to begin with. Using Notepad or

the ISE, open a file and type in the following:

 Write-Host get-date

 Save the file, naming it as GetDate.ps1

 Use the following command to call the script through

PowerShell:

 & "C:\GetDate.ps1"
 The output will appear in PowerShell.
 Example Script Two – Force Stop A Process

 A PowerShell script can be used to stop a frozen Windows

service. Let’s say, for example, that your company uses Lync as a

business communication service. It continually freezes, causing

problems, and has a process ID of 9212 – we can use a script to

stop it.

 As you did earlier, open a new file and type in:
 stop-process 9212
 or
 stop-process -processname lync

 Save your script and name it StopLync.ps1. Invoke it via

Powershell with the following command:

 & "X:\StopLync.ps1"
 You can expand this script to stop multiple processes at the

same time simply by adding the right commands to the file.

Another script could be written to start multiple processes at the

same time:

 start-process -processname [your process here]

 This is very useful if you want multiple networking processes

started at the same time and don’t want to waste time inputting

several commands.

 Example Script Three – Check to See If a File Exists

 Let’s say you want to delete several files at once; first, you
should check that they exist. A command called test-patch tells

you whether certain elements of a path are there. If the elements

are there, TRUE is returned; if not, FALSE is returned. Just type

the following:

 test-Path (the file path)
 Example Script Four – Set a VPN up On a New Machine

 Now you understand the script basics, we can write a script to

do something useful. One of the biggest advantages of

PowerShell, especially for system administrators, is its ability to

automate the setting up of new machines. Today, many businesses

and individuals use VPNs (virtual private networks) as a way of

securing their data, and any new machine added to the system

should be connected to that VPN at the time they are set up.

Sure, you could do this manually, but PowerShell makes the job

so much easier. With PowerShell, we can write a script that sets

up and configures it automatically. The easiest way to do it is to

open a new file and add this command to it:

 Set-VpnConnection -Name "Test1" -ServerAddress "10.1.1.2" -

PassThru

 Set the server address to the local VPN server address, and

the -PassThru command will ensure the VPN configuration options

are returned.

 Save the file, name it SetVPN.ps1 and then invoke it:

 & "X:\SetVPN.ps1"

PowerShell Punctuation

In summary, below is a table showing you some of the

punctuation you may have seen used in this chapter:

chapter:

chapter:

chapter:

chapter: chapter: chapter: chapter: chapter: chapter: chapter:

chapter: chapter: chapter: chapter: chapter: chapter: chapter:

chapter:

chapter: chapter: chapter: chapter: chapter: chapter: chapter:

chapter: chapter: chapter:

chapter:

Chapter 4: PowerShell Strings and Quotes

One of the most used data types in any programming language,

especially PowerShell, is the string type. It is used for all sorts of

things, including input prompts, message displays, and even

putting data in files. In fact, it’s fair to say that to write a script,

you need strings.

 In this chapter, we will look at what strings are and what they
can do. You can manipulate them for just about any purpose you

want. You can use them for replacing words, characters,

concatenation, splitting strings, and much more!

Understanding Strings

The .NET documentation defines a string as “a sequential

collection of characters that is used to represent text”. If you have

a sequence of any number of characters forming a piece of text,

you have a string.

Defining Strings

 A string must be defined by being enclosed in single quotes or

doubles as you can see in the examples below:

 PS> 'Hello PowerShell - Today is $(Get-Date)'

 PS> "Hello PowerShell - Today is $(Get-Date)"

 The first example string has a pair of single quotes and the

second has double quotes. There is only one difference between

them – when you enclose a string in double quotes, it supports

expansion of that string; single quotes are used for representing

literal strings.

 To demonstrate that, look at the screenshot below – a string

enclosed in single quotes will return the exact text in the quotes;

the string with double quotes will return the enclosed string and

the result of the cmdlet, Get-Date:

 This shows you when you should use single or double quotes,
but we will dig into this in more detail at the end of the chapter.

For now, more about strings.

String Object

So, a string is a series of characters forming a text and the result

from this string is called a string object, which is a .NET object

of the type, [System.String]. Because a string is an object, it

contains properties, and you can use the Get-Member cmdlet to

access these.

 PS> "Hello PowerShell - Today is $(Get-Date)" | Get-Member=

 In the screenshot below, you can see the TypeName and a list

showing some of the string object properties.

PowerShell Strings - Concatenation

Concatenation is the act of joining one string to another. You can

concatenate multiple string objects to form one new string object.

PowerShell has a few concatenation methods, and which one you

use will depend on how you are going to implement the

concatenation.

 One of the best real-world examples of string concatenation is

user creation in Active Directory. Let’s say that you are writing a

script to take the following values from a list:

First name

Last name

Department

 Concatenation allows you to draw up the naming conventions

for the following information:

Name

Display name

Username

Email address

 In the example, you will work with the following strings, so

open a PowerShell session and type in the following:

 $domain = 'contoso.com'

 $firstname = 'Jack'

 $lastname = 'Ripper'

 $department = 'Health'

 We want to get the following values from the variable values

above:

 Name = firstname lastname

 DisplayName = firstname lastname (department)

 SamAccountName = firstname.lastname

 EmailAddress

 Shortly, we will create those values using some of the different

PowerShell methods for concatenation.

PowerShell Strings Concatenation Operator

 Every programming language has a concatenation operator.

Visual Basic, for example, uses the & symbol (ampersand) while

PowerShell uses the + symbol (plus).

 With the concatenation operator, you can use the code below

to get the values you need:

 # Using the String Concatenation Operator

 ## Name

 $firstname + ' ' + $lastname

 ## DisplayName

 $firstname + ' ' + $lastname + ' (' + $department + ')'

 ## SamAccountName

 $firstname + '.' + $lastname

 ## Email Address

 $firstname + '.' + $lastname + '@' + $domain

 The output from that should look like this:

PowerShell Strings Expansion

The string expansion method is the PowerShell concatenation

method that provides the shortest code. Have a look at the

example below; you can see that all you need to do is put the

strings in the order they should appear and use double-quotes to

enclose them:

 # Using String Expansion
 ## Name

 "$firstname $lastname"

 ## DisplayName

 "$firstname $lastname ($department)"

 ## SamAccountName

 "$firstname.$lastname"

 ## Email Address

 "$firstname.$lastname@$domain"

 PowerShell will interpret the string expansion and handle it,
with the output being the concatenated string. Have a look at the

example output below:

PowerShell Format Operator

The PowerShell format operator, indicated by -f, is for composite

formatting, and use of the operator is in three parts. Look at the

code example below; on line three you see “{0} {1}” which is

used for representing the format and placeholders. The numbers

are showing the index or location of the string to display.

 In this example you can that $firstname, $lastname represents

the string collection as the input, which means that $firstname

has an index of 0 and $lastname has an index of 1. Lastly, you

can see the format operator between the placeholder and string

collection:

 # Using Format Operator

 ## Name

 "{0} {1}" -f $firstname,$lastname

 ## DisplayName

 "{0} {1} ({2})" -f $firstname,$lastname,$department

 ## SamAccountName

 "{0}.{1}" -f $firstname,$lastname

 ## Email Address

 "{0}.{1}@{2}" -f $firstname,$lastname,$domain

 The output will be something similar to below.

PowerShell -Join Operator

You can use the -Join operator to join several strings into one

string, and there are two ways to do this. The first is to follow

the -Join operator with the string array that you want

concatenated, but you do not get the option of adding a

delimiter. The strings are simply joined together with nothing in

between them:

 -Join
 In the second method, -Join lets you specify a delimiter and

the strings are joined with the delimiter in between each one:

 -Join
 The idea is to concatenate two or more strings, and the code

below shows you how to use the operator to join them:

 # Using the Join Operator

 ## Name

 $firstname, $lastname -join ' '

 ## DisplayName

 $firstname,$lastname,"($department)" -join ' '

 ## SamAccountName

 -join ($firstname,'.',$lastname)

 ## Email Address

 -join ($firstname,'.',$lastname,'@',$domain)

 You would see something like the output below if you ran this

code:

.NET String.Format() Method

This method is the .NET version of the format operator in

PowerShell. It works the same way as the format operator in that

you must specify the format and placeholders:

 # Using the Format Method

 ## Name

 [string]::Format("{0} {1}",$firstname,$lastname)

 ## DisplayName

 [string]::Format("{0} {1} ({2})",$firstname,$lastname,$department)

 ## SamAccountName

 [string]::Format("{0}.{1}",$firstname,$lastname)

 ## Email Address

 [string]::Format("{0}.{1}@{2}",$firstname,$lastname,$domain)

 Below you can see how the String.Format method works:

.NET String.Concat() Method

This is the .NET version of the concatenation operator in

PowerShell. However, rather than the + symbol, this one involves

placing all the strings to be added inside the method, i.e. –

 [string]::Concat(string1,string2...).

 Here’s a full example:

 # Using the .NET String.Concat Method

 ## Name

 [string]::Concat($firstname,' ',$lastname)

 ## DisplayName

 [string]::Concat($firstname,' ',$lastname,' (',$department,')')

 ## SamAccountName

 [string]::Concat($firstname,'.',$lastname)

 ## Email Address

 [string]::Concat($firstname,'.',$lastname,'@',$domain)

 In the screenshot below, you can see the result of using this
method:

.NET String.Join() Method

This is the .NET version of the join operator in PowerShell and

the format of the method is [string]::Join(,,,...).

 The delimiter is ALWAYS the first item in the method, followed

by the item values, which are the strings to be concatenated. The

code below shows you how this works – if you don’t want a

delimiter, make sure you specify it this way - — >:

 # Using the .NET String.Join Method

 ## Name

 [string]::Join(' ',$firstname,$lastname)

 ## DisplayName

 [string]::Join(' ',$firstname,$lastname,"($department)")

 ## SamAccountName

 [string]::Join('',$firstname,'.',$lastname)

 ## Email Address

 [string]::Join('',$firstname,'.',$lastname,'@',$domain)

 The result will look something like this:

How to Split PowerShell Strings

Up to now we have looked at a few ways to concatenate or join

strings, so now we need to look at how to split them. There are

two main way to do this – with the split() method, or with the

split operator.

Using the Split() Method

 The simplest way to create arrays by splitting strings is by

using the split() method. This is on all string objects and can

split strings based on non-regex characters. Let’s look at an

example.

 Let’s say we have a string of green | eggs | and | ham and we

want an array, something like @(‘green’, ‘eggs’, ‘and’, ‘ham’). The

string split can be done on the pipe (|) as you can see in the

code below:

 $string = 'green|eggs|and|ham'

 $string.split('|')
 PowerShell splits the string using the pipe symbol into an

output like below:

 While this is a simple method of splitting strings, it is

somewhat limited. It doesn’t let you use regular expressions to

split the strings, so, if you need to go further than this method

allows, you need to understand the split operator.

The -split Operator

 This is the primary method of splitting strings and it allows for

the strings to be split between the default (whitespaces) or using

a specified delimiter. Below, you can see the syntax for the -Split

operator – take note of the difference between the unary split and

the binary split:

 # Unary Split
 -Split
 -Split ()
 # Binary Split
 -Split [,[,""]]
 -Split {} [,]
 Here, you can see that the $string variable has a value of one

single-line string. With the split operator, we can split that single

line into a string array, and the split string will be saved to the

variable called $split:

 ## Splitting Strings into Substrings
 # Assign a string value to the $string variable

 $string = 'This sentence will be split between whitespaces'

 # Split the value of the $string and store the result to the
$split variable

 $split = -split $string
 # Get the count of the resulting substrings
 $split.Count
 # Show the resulting substrings
 $split
 Run it and you will see that one string has been split into
several substrings.

Using a Character Delimiter to Split Strings

 So, we looked at the split operator and how to use it for
splitting one string into several, even without the use of a

delimiter. The reason for this is that the default delimiter in the

split operator is whitespace. However, you can also use script

blocks, patterns, strings, and characters as a delimiter. In the

example below, we use the semicolon (;):

 ## Splitting Strings into Substrings with Delimiter

 # Assign a string value to the $string variable
 $string = 'This;sentence;will;be;split;between;semicolons'

 # Split the value of the $string and store the result to the
$split variable

 $split = $string -split ";"
 # Get the count of the resulting substrings
 $split.Count
 # Show the resulting substrings
 $split
 Run this code in PowerShell and you should see this output:

 You should spot that you cannot see the delimiter at all as it

has been omitted from the substrings. If you want to keep the

delimiter character, you can enclose it in a set of parentheses, like

this:

 $split = $string -split "(;)"
 $split.Count
 $split
 Once you have modified the delimiter, run it and you should

see this output:

 The delimiter strings are now there and are counted with the

substrings.

Using a String Delimiter to Split Strings

 You can also use a string to split a string; in the example

below, we are using a string ‘day’:

 $daysOfTheWeek=

'monday,tuesday,wednesday,thursday,friday,saturday,sunday'

 $daysOfTheWeek -split "day"

 As you would expect, the result is a split between the text,
‘day’.

Using a RegEx Delimiter to Split Strings

The split operator uses Regex by default to match the delimiter

specified, which means that RegEx can be used as delimiters to

split the strings. In the next example, we have a string containing

both word and non-word characters. We want the string split

using the non-word characters and, in RegEx, \W is used to

represent these while \w is used to represent the word characters

that match [a-z,A-Z,0-9]:

 $daysOfTheWeek=

'monday=tuesday*wednesday^thursday#friday!saturday(sunday'

 $daysOfTheWeek -split "\W"

 Run the code and the output will show you that non-word
characters were used for delimiters.

Split Strings and Limit the Number of Substrings

 There is also a way of stopping the split operator so that it
doesn’t split a string into substrings. To do that, you need to use

the parameter. If you look at the syntax for the split operator, you

will see that the parameter comes straight after the parameter.

Here’s the syntax again just for reference:

 -Split [,[,""]]
 So, following that, the next code has been modified so the

number of substrings is limited to 3:

 $daysOfTheWeek=

'monday,tuesday,wednesday,thursday,friday,saturday,sunday'

 $daysOfTheWeek -split ",",3

 Running the code will show you that only three substrings are
output, and the rest of the delimiters are skipped over.

 Now, let’s say that you wanted the substrings limited in

reverse. In this case, you would use a negative value for the

parameter. In our example, we change it to -3:

 $daysOfTheWeek=

'monday,tuesday,wednesday,thursday,friday,saturday,sunday'

 $daysOfTheWeek -split ",",-3

 The result of that is that the string is split from the last three

matching delimiters.

Finding and Replacing Strings

Now, we will look at two methods you can use for searching for

and carrying out a string replace in PowerShell. Those two

methods are the -Replace operator and the Replace() method.

The Replace() Method

 We’ll start with the Replace() method, which is built-in to the

string object, and used for helping you in search for and replace

operations. The method can take up to four overloads and the

acceptable ones are shown below:

 .Replace(, [,][,])
 Really, you only require the and overloads, while the and
overloads are optional.

 As you can see from the next example, the code looks for

every instance of a comma character (,) with the semicolon (;):

 $daysOfTheWeek =

'monday,tuesday,wednesday,thursday,friday,saturday,sunday'

 $daysOfTheWeek.Replace(',',';')

 You can use the replace() method to do more than just replace

one character; you can also use it for search and replace on

strings too. In the code below, we are replacing one word, ‘day’

with another, ‘night’:

 $daysOfTheWeek =

'monday,tuesday,wednesday,thursday,friday,saturday,sunday'

 $daysOfTheWeek.Replace('day','NIGHT')

The -Replace Operator

 You can also search for and replace operations using the
replace operator, and you can see the syntax for that below:

 -replace ,
 With that syntax, we are replacing ‘day’ with night’ in the next

example, using that replace operator:

 $daysOfTheWeek =

'monday,tuesday,wednesday,thursday,friday,saturday,sunday'

 $daysOfTheWeek -replace 'day','NIGHT'

 And the next code is using a RegEx match to use the replace

operator for replacing the strings. We used the here-string to

search on for a string matching (#.) and are replacing it with

nothing:

 $daysOfTheWeek = @'

 1. Line 1
 2. Line 2
 3. Line 3
 4. Line 4
 5. Line 5
 '@
 $daysOfTheWeek -replace "\d.\s",""

Extract Strings from Strings

In the string object is another method named SubString() which

is used for extracting strings from strings at specified points.

Here’s the syntax for SubString():

 .SubString([,])
 StartIndex is placed at the position where the search by the
SubString() method will start. The length parameter states how

many characters are to be returned from the position of startIndex

– this is an optional parameter and if you don’t use it, all the

characters will be returned by SubString().

Extract a Substring from a Starting Position with a Fixed Length

 In the next example, we retrieve a sample of the value for the

$guid string. It starts at the index of 9 and returns the 5

characters after that point:

 $guid = 'e957d74d-fa16-44bc-9d72-4bea54952d8a'
 $guid.SubString(9,5)

Extract a Substring from a Dynamic Starting Position

In our next you can use the length property to define a dynamic

starting index. The code will:

Retrieve the string object’s length

Divide the length by 2 to get the middle index’s index

Use the middle index as the start for the substring

 $guid = 'e957d74d-fa16-44bc-9d72-4bea54952d8a'
 $guid.SubString([int]($guid.Length/2))
 Because we didn’t specify the length value, all the starting
index characters will be returned by the SubString() method.

How to Compare PowerShell Strings

PowerShell can also help you to compare strings and this is done

with methods built into the string object; methods such as

CompareTo(), Contains(), and Equals(). You can also use the

comparison operators in PowerShell.

The CompareTo() Method

 This method will return a 0 value if the compared strings have

identical values. For example, the next code is used for comparing

string objects:

 $string1 = "This is a string"
 $string2 = "This is a string"
 $string1.CompareTo($string2)

 Because they both have the same value, you should see a

result of 0 when you run it.

The Equals() Method and -eq Operator

You can use both of these – the -eq operator and the Equals()

method – for checking if two strings have equal values. In the

next example, we use the Equals() method:

 $string1 = "This is a string"
 $string2 = "This is not the same string"

 $string1.Equals($string2)
 The output should be False because the string values do not
equal one another.

 The -eq Operator

 Now we’ll use the -eq operator to compare the values of two

strings:

 $string1 = "This is a string"
 $string2 = "This is not the same string"

 $string1 -eq $string2

 From the output, you will easily see that you get the same

result whether you use the Equals() method or the -eq operator.

The Contains() Method

In the next code we are comparing two strings by checking if one

string has the substring of another. The code below shows you

that the values for $string 1 and $string 2 are not the same, but

that the $string2 value is a $string1 substring.

 $string1 = "This is a string 1"
 $string2 = "This is a string"
 $string1.Contains($string2)
 If you run this, you will see from the output that the result is

True.

PowerShell Quotes

We briefly mentioned quotes earlier and, to finish off this chapter,

we’re going to take a deeper look at them.

 PowerShell allows the use of two types of quote – single and
double. There are important differences between them that, if you

don’t understand them, can make or break your scripts.

Understand the differences and your scripts will be far more

effective.

‘Single Quotes’

 The single quotes are the ones you will use the most often

and are the ones you will encounter the most when you create or

troubleshoot a script in PowerShell. Have a look at this example:

 # Assign variable with literal value of 'single'.
 $MyVar1 = 'single'

 # Put variable into another literal string value.

 Write-Host -Message 'Fun with $MyVar1 quotes.'

 Now have a look at the output:

 As you can see, $MyVar1 is ignored by PowerShell; instead the

variable is literally treated exactly as it was typed – as $MyVar1. It

doesn’t do any substitutions at all.

 So, how do we get PowerShell to see the value in a string
value that has been quoted? Well, that’s where we need to

understand the double quotes.

“Double Quotes”

 Double quotes provide string values with a dynamic element

and you are likely to encounter these when you have dynamic

data in a string. That data comes from variables that have been

generated dynamically or are stored in memory. Have a look at

this example:

 # Same as previous example. Create variable with a simple

value.

 $MyVar2 = 'double'

 # Now a demonstration of how the double quotes work for

interpretation

 Write-Host -Message "Fun with $MyVar2 quotes."

 Have a look at the output:

 In this example, $MyVar 2 is processed by PowerShell because

it is in a string with double quotes. This type of quote ensures

that PowerShell parses for the variable that has a $ sign in front

of it, and the variable name is substituted with the corresponding

value.

Real World Example

 Let’s apply what we learned here to a real-life example. Let’s

say that you want a small function created to provide one of your

team operators with some basic information:

 Date / Time

 Disk % Used

 Disk % free

 This information needs to be visually turned into an operator.

First, we need a bit of pseudo-code. The date time must be

displayed as the current date and time, so have a think about

how this will work. The Get-Date cmdlet could be used with the

UFormat parameter; that would have the right patterns to provide

the right date and time:

 $date = Get-Date -UFormat "%m / %d / %Y:"

 Test this in PowerShell and you will see that it works just fine:

 So, that gets the first bit of the script out of the way. Now we

need a bit of disk information output on the PowerShell terminal;

to be more specific, we want to know how much free space

remains as a percentage. We’ll use Write-Host to display this, but

we need a bit of extra code in our string inside double quotes.

 Don’t forget, this will be dynamic information so we will start

by creating a variable and then get the value we want with a

member type property:

 $disk = Get-DiskSpace | Where-Object -Property Name -EQ 'C:\'

 Again, testing this shows it works well:

 Great. We now have a pair of variables that can go in the

strings and the operator will see them when the function is run.

So, let’s put all of this together in the script that will be the

function:

 function Get-CurrentDiskPercentageUsed {
 $date = Get-Date -UFormat "%m / %d / %Y:"

 $disk = Get-DiskSpace | Where-Object -Property Name -EQ

'C:\'

 Write-Host "Storage report for $date"

 Write-Host -ForegroundColor Yellow "There is

$($disk.PercentFree)% total disk space remaining."

 }
 Run this in the terminal and something like this will appear:

 Now, did you spot what we did with the Write-Host line that

has the $disk variable in it? The $() subexpression operator is

evaluated by PowerShell as a whole subexpression and the result

is replaced. And this will also negate the need to have to create

even more variables, resulting in memory savings and a much

faster script.

 However, we still need to do some work to our function, so

let’s add a bit of math to give the operator a full calculation:

 function Get-CurrentDiskPercentageUsed {
 $date = Get-Date -UFormat "%m / %d / %Y:"

 $disk = Get-DiskSpace | Where-Object -Property Name -EQ 'C:\'

 Write-Host "Storage report for $date"

 Write-Host -ForegroundColor Red "There is $(100 -

$disk.PercentFree)% total disk utilization on drive $($disk.Name)."

 Write-Host -ForegroundColor Yellow "There is

$($disk.PercentFree)% total disk space remaining."

 }

 And the output of that is:

 Now the operator is able to make much faster decisions while,

at the same time, providing support to a remote system.

Escaping Double Quotes Using PowerShell

 You now know how the single and double quotes work in
PowerShell, so let’s briefly discuss something a little more complex

– how to escape the double quotes in a string.

 You learned that variables can be expanded in strings by using
the double quotes, but what happens if you need literal double

quotes included in a string? In a case like that, you would need

to use single quotes, or you would need to escape the double

quotes.

 What does mean? Let’s take a look at an example:

 We’re going to create a string with double quotes, as you can

see below. Note that, right now, “string” doesn’t have the double

quotes in it.

 PS51> "string"
 string
 There are two ways to add the double quotes in. You could
choose to use single quotes to enclose the string, or, you can use

a backtick symbol to escape the double quotes. Here’s an example

of both options in PowerShell – note that we now have the

double quotes in “string”:

 PS51> '"string"'

 "string"
 PS51> "`"string`""
 "string"
 There really isn’t a great deal to learn with PowerShell quotes,
but you do need to remember one key concept – you must know

when to be dynamic and when to be literal. Use single quotes

unless your string data is dynamic, it’s as simple as that.

 In the next chapter, we’ll take a look at PowerShell automation.

Chapter 5: Automating Tasks Using PowerShell

In this chapter, we’ll be looking at some of the ways you can use

PowerShell to automate some of your admin tasks on all your

active devices. Whenever you need to perform a task, you should

ask yourself these two questions:

How often will this task have to be performed?

How long will it take me to do this task manually?

 When you have the answers to those questions, you have the

answer as to whether that task should be scripted in PowerShell.

 When we start, it is likely that we will do all our PowerShell

tasks as individual units. What that means is that, whenever a

script is performed as a series of instructions, we have to wait

until the task is returned before interacting further with the

console.

 However, getting around this is quite simple; all you need to

do is start another console to get a new instruction under way

while the first is finishing up. But, while that works okay, it isn’t

an ideal situation, and it certainly isn’t an efficient way for system

admins to do their work, for the following reasons:

First, you cannot transmit the variable values from one console to

another

Second, you also can’t easily pass the results between consoles

Third, it isn’t possible to individually identify the processes on

each separate console.

 Let’s take a simple example. Tomorrow morning you go to

work. When you reach your work station, there is an email asking

you to do one action on 30 servers. Are you really going to sit

there and open up 30 separate consoles in PowerShell? Of course

not.

 There is a neat feature in PowerShell, designed to help you get
around the problem of multiple consoles, and that feature is

called jobs.

 The Jobs
 With jobs at your disposal, you can asynchronously perform

scripts and background instructions, and there are several cmdlets

(instructions) that can be applied to jobs:

 CMDLET Description Module Name

 Get-Job List jobs Microsoft.PowerShell.Core

 Receive-Job Get results from jobs Microsoft.PowerShell.Core

 Remove-Job Delete jobs Microsoft.PowerShell.Core

 Resume-Job Restart job Microsoft.PowerShell.Core

 Start-Job (1) Start job Microsoft.PowerShell.Core

 Stop-Job (2) Stop job Microsoft.PowerShell.Core

 Suspend-Job Interrupt job Microsoft.PowerShell.Core

 Wait-Job Wait for another action to

end Microsoft.PowerShell.Core

1) You cannot use this for remote instructions; Invoke-Command

must be used.

2) You should not need to use this in normal time as jobs

automatically stop once their actions are finished.

 Jobs fall into several categories, namely:

Background

Remote

Scheduled

Workflow

 Let’s delve into these now
BackgroundJob

 Let’s look at the instruction below - lists your firewall’s active
rules and uses their direction to sort them by:

 Show-NetfirewallRule| sort direction | ?enabled-eq"true" | ft-

property @{label="Name" ; expression={$_.displayname}},

@{label="Direction" ; expression={$_.direction}}

 So, here, we’ve used an instruction that has conditions, which
will make the processing time a longer. Starting a job is simple –

the previous instruction line is passed in a ScriptBlock to StartJob,

and then GetJob is used to follow what happens with the job.

 Start-Job -ScriptBlock{Show-NetfirewallRule| sort direction | ?

enabled -eq"true" | ft-property @{label="Name" ; expression=

{$_.displayname}}, @{label="Direction" ; expression={$_.direction}}}

 Get-Job
 On the console, the output should contain:

An ‘ID’ – this is unique

A name – by default this will be of the syntax, “Job”

The job type – a BackgroundJob in our case

The position – Failed, Running or Completed

An indication whether the data can be displayed

The station the instruction was performed at

The completed instruction

 Receive-Job is used to procure the data.
 NOTE - -Keep should be added to Receive-Job to recover the

data, thus allowing you to retain the results once verified. If you

don’t do this, the job stays available, but the results are erased.

 So, we can now get the firewall rules for our computer:

 PS > Receive-Job -ID 2 -Keep
 NOTE – Remember to delete a job once you have used it

 PS > Remove-Job -ID

 Really, we haven’t done anything complex here but you should

consider giving your jobs names just so they are more visible:

 PS > Start-Job -Name

RemoteJob

 Systems administrators would benefit from automating their

recurring tasks as much as they can. Often, they get asked to

perform an action on multiple servers at the same time and to

do so as quickly as possible. They know that time is of the

essence and they have to find the best way to do the job quickly

to minimize any potential disruption. It is for that reason Remote-

Job was created – here’s an example:

 PS > Get
ItemPropertyHKLM:\SOFTWARE\Wow6432Node\Microsoft\Windows\

CurrentVe

 sion\Uninstall* | Select-Object

DisplayName,DisplayVersion,Publisher,InstallDate|

 ? {$_.DisplayName-ne $null} | sort DisplayName

 The above instruction lists all the software on the computer,

after searching the registry and retrieving the data. Note that the

software is x64; for software x86 installations, you will find the

settings at:

 HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\

 There are a few possibilities for doing this:

You could start the job, using a connection to a remote computer

using a -ScriptBlock, which would display the job on the

workstation

Start-Job -Scriptblock {Do something -ComputerName Server1}

You could start the job on a remote machine; the ScriptBlock

instruction does work remotely but will display all the data on

your workstation. The important part here - -AsJob – ensures the

job is done remotely using the -ComputerName parameter

Invoke-Command -Scriptblock{Do something} -

ComputerNameServer1 -AsJob

You could open a remote session on another machine. Anything

done on a remote machine is the same as what is done locally,

but is handled remotely.

PS >Enter-PSSession-ComputerNameServer1[Server1]: PS > Start-Job

-ScriptBlock{Do something}

PSScheduleJob

 Onto the next stage. We now know how to use the jobs in

PowerShell remotely and locally and you know about scheduled

Windows tasks. Now we’re going to schedule the PowerShell jobs,

and there are two primary advantages to this:

You can use cmdlets to manage planned tasks, meaning you can

obtain the results from a scheduled job, for example, by using

Receive-Job

You can automatically create tasks in Windows Scheduler

 In the next example, we will get all Windows services that have

not yet been started but have an automatic mode configuration.

This lets us check each morning to see if there have been any

issues on a server.

 PS >Get-wmiobject win32_service -Filter "startmode = 'Auto'

AND state != 'running' " | select name, startname

 To make things more visible, we’ve used a ScriptBlock variable

(a temporary one) to store the instruction. Register-ScheduledJob

is used, and the job is given a name:

 PS >$checkService = {Get-wmiobject win32_service -Filter

"startmode = 'Auto' AND state != 'running' " | select name,

startname}

 Register-ScheduledJob-ScriptBlock$checkService-Name 'Check

Services'

 NOTE – you must use Invoke-Command if you want a

scheduled job created on a remote unit.

 Right now, this job does not have a trigger. Triggers are used
when we want the ScheduledJob run. The job is started on a set

day and time or when a particular event happens, such as when

the computer goes idle.

 PS > Get-ScheduledJob-Id 1 | select Jobtriggers

 JobTriggers—————-

 {0}

 The only action is a manual one, and in our case, we will plan

it. Management of the triggers is done using these cmdlets:

 CMDLET Description Module Name

 Add-JobTrigger Add Jobtrigger PSScheduledJob
 Disable-JobTrigger Disable Jobtrigger PSScheduledJob
 Enable-JobTrigger Enable Jobtrigger PSScheduledJob
 Get-JobTrigger Get Jobtrigger PSScheduledJob
 New-JobTrigger Create Jobtrigger PSScheduledJob

 Remove-JobTrigger Delete Jobtrigger PSScheduledJob

 Set-JobTrigger Set Jobtrigger PSScheduledJob
 First, the trigger is created and then stored in $daily trigger,
which is temporary. That starts work at 7am, allowing all the

information to come in ready for the daily check.

 When we have created the trigger, the Add-JobTrigger cmdlet is

used to link it to the last job.

 $dailyTrigger= New-JobTrigger-Daily -At "07:00:00"

 Add-JobTrigger-Name "Check Services" -Trigger $dailyTrigger

 Get-ScheduledJob
 What we want to do here is take a Get-ScheduledJob and

process it to make sure it gets activated with the correct

parameters. The trigger can always be disabled, if needed, using

the Disable-JobTrigger cmdlet.

 Get-ScheduledJob-name "Check Services" | Get-JobTrigger

 Next, the Windows task scheduler is opened, and we check the

PowerShell folder to make sure that the Check Services trigger has

been created.

 To end this brief discussion on triggers, it is worth noting that
you can set a few advanced options. The parameter called

Options is optional and below, you can see a complete example:

 $dailyTrigger= New-JobTrigger-Daily -At "07:00:00"

 $MyOptions= New-ScheduledJobOption-RunElevated

 $checkService = {Get-wmiobject win32_service -Filter "startmode

= 'Auto' AND state != 'running' " | select name, startname}

 Register-ScheduledJob-ScriptBlock$checkService-Name 'Check

Services'-ScheduledJobOption$MyOptions

 Add-JobTrigger-Name "Check Services" -Trigger $dailyTrigger

 Get-ScheduledJob
 You can use any of these parameters if you want your

Scheduled Job customized:

-StartIfOnBatteries

-StopIfGoingOnBatteries

-WakeToRun

-StartIfNotIdle

-StopIfGoingOffIdle

-RestartOnIdleResume

-IdleDuration

-IdleTimeout

-ShowInTaskScheduler

-RunElevated

-RunWithoutNetwork

-DoNotAllowDemandStart

-MultipleInstancePolicy

-JobDefinition

PSWorkflowJob

 Last, we have the workflow jobs. Up to now, we have
understood that we can use Jobs to ensure we can automate

multiple tasks at the same time, but you can’t do this with every

system job. In the real world, systems have to deal with:

The remote system you are working on restarts

Tasks needing to be adjourned

Bulk work needing to be processed, such as using Hyper-V to

expand virtual stations, migrating the mailbox on the Exchange,

and so on

 So, how do we get around these? By using PowerShell
workflows, which came in with PowerShell v3.0. Here, you can see

a workflow, divulging simple info about your operating system:

 workflow myfirstworkflow { Get-CimInstance -ClassName

Win32_OperatingSystem | select Caption, Version}

 myfirstworkflow

 Do you know how to define a PowerShell function? Then you
will easily grasp how workflows are defined. They have an identical

structure; all you need is a keyword, Workflow, and a name.

 Every command in that workflow is independent of the one

that follows it. What that means is that no variable can be seen

by any command – no data state is shared. Now, that seems

somewhat restrictive, but you can do it by using a single

condition – an InlineScript block. Then, PowerShell will see it as a

single script in a one-off session:

 Workflow DemoWFW {

 InlineScript {
 $var1 = Get-Host

 $version = $var1 | select version

 $version
 }
 }
 DemoWFW

 You can also process PowerShell workflows as background jobs
using the -AsJob parameter when the workflow asks for it:

 PS > DemoWFW-AsJob-PSComputerNameServer1

 Id Name PSJobTypeNameState HasMoreDataLocation

Command

— —— ————————— ———- ————————

— ————- —————

6 Job6 PSWorkflowJobRunningTrue Server1 DemoWFW

 Now, we should look at how to process commands

simultaneously. We use the -Parallel keyword to process any tasks

running in parallel and we’re going to use a ForEach loop to

process actions that are similar at the same time on each of the

listed servers. This is a random process:

 Workflow Get-SrvDiskDrive {

 $servers = "ADM01","ADM11"

 Foreach -Parallel ($srv in $servers) {
 Get-CimInstance -PSComputerName $srv -ClassName

Win32_DiskDrive

 }
 }
 Get-SrvDiskDrive

 The best way to see how activities are executed like this is to
look at a simple diagram of a workflow. You can easily launch

multiple commands at the same time and run a sequence of

commands in parallel. You do this with the Sequence keyword,

followed by a ScriptBlock containing the commands. The workflow

will look much like the one below:

 We can use the example below to illustrate this, showing a

new employee arriving at your company:

 Workflow Create-NewEmployee {

 parallel {
 Create VM # Command 1

 sequence {
 Create AD account # Command 2a

 Create Mailbox # Command 2b

 }
 Create phone configuration # Command 3

 }
 }

 Create-NewEmployee

 You can choose to stop the workflow at any stage. If you want
command processed at a certain time, SuspendWorkflow is used,

and retrieving it requires you add the job ID to the Resume-Job

cmdlet.

 The Checkpoint-Workflow cmdlet offers something interesting –

the ability to snapshot your workflow’s current data. These show

the variables and their values and the output. If an interruption to

the workflow occurs and then the workflow starts again, the last

snapshot saved is used and processing will start from them – if

you didn’t have checkpoints, your workflow would need to start all

over again.

 Below, you can see an example showing how the servers are

backed up at the end of every processing:

 Workflow MyWorkflow {

 $variable = "Server1","Server2"
 Foreach -Parallel ($var in $variable) {
 # Do something ...

 Checkpoint-Workflow

 }
 }
 MyWorkflow

 Note that, when you do a CheckPoint, it does have an impact

on the performance because data has to be collected and it has

to be written to disk.

 One important thing I do need to emphasize is that there is a

difference between Checkpoint-Workflow and Suspend-Workflow.

Where the latter pauses the current command, the former persists

the workflow state at any given point in time by snapshotting the

current state.

 Creating a PowerShell workflow requires an XAML (eXtensible

Application Markup Language) declarative workflow to be

generated. The Windows Workflow Foundation will then use this

for running the workflow. This code can be seen from the console

as you can see in the next example. First, a workflow is created

and then we look at the XAML representation:

 Workflow Check-WinFeature {

 Get-WindowsFeature

 }
 Check-WinFeature

 To get this in XAML format:

 PS > (Get-Command Check-WinFeature).XamlDefinition

 And that brings us to the end of this chapter on automating

administration tasks using PowerShell. We looked at how to use

Jobs and Workflows to help you with routine tasks, and

determined that one of the best ways for working out an

implementation strategy for PowerShell tasks is a sequence of

steps:

Step One – Job

Step Two – Workflow

Step Three – Complex combinations, i.e. workflows within

workflows

 Creating PowerShell Jobs brings two primary benefits:

Simple commands can run in the background – think command-

line visibility

You can see your Job results when you want to

 Unless you are working with sensitive data, collecting results in
one place makes managing remote background jobs much easier.

Where sensitive data is concerned, you could keep the data on a

remote computer to ensure its safety.

 Workflow is incredibly flexible, and you can customize it to

meet your own company requirements and, when you have

activities that could be executed parallelly, you can simply add

them to a Workflow. That is the real strength of PowerShell

Workflows.

 To finish this book, we’ll take a brief look at PowerShell
Remoting.

Chapter 6: PowerShell Remoting

With PowerShell you can run your commands or access full

sessions on a remote system. If you are familiar with SSH, a

method of accessing a remote terminal on a different OS, then

you’ll grasp this quickly.

 There are a few ways you can make a connection to a remote

computer cmdlet. The systems can be in a different or the same

domain, or even for PowerShell workgroups. Here we are going to

focus on three things:

The Inbuilt parameter

The Invoke-Command

Remotely executing the PSSession command

Inbuilt -ComputerName parameter.

Lots of PowerShell cmdlets provide support for the -

ComputerName parameter. This is used to describe the names of

the remote computers, i.e. the Get-Process, Get-Service and Get-

WMIObject cmdlets, among others.

 Here’s an example.

 For remote servers in the same domain, just add -

ComputerName credentials:

 Get-Service Spooler -ComputerName Test1-Win2k12

 And the output is:
 PS C:\Users\Administrator> Get-Service Spooler -ComputerName

Test1-Win2k12

 Status Name DisplayName

——— —— —————-

Running Spooler Print Spooler

 Or if you want to use WMI to get the BIOS information off

the computer:

 Get-WmiObject win32_bios -ComputerName Test1-win2k12

 The output for this is:
 PS C:\Users\Administrator> Get-WmiObject win32_bios -

ComputerName Test1-win2k12

 SMBIOSBIOSVersion : 6.00

 Manufacturer : Phoenix Technologies LTD

 Name : PhoenixBIOS 4.0 Release 6.0

 SerialNumber : VMware-56 4d 0d 7f 8a 7e f6 fa-f2 55

1d b6 a3 52 80 9f

 Version : INTEL – 6040000

 However, for remote servers in different domains, you might

see an authentication error message like this one:

 PS C:\> Get-Service -ComputerName Test1-Win2k12

 Get-Service : Cannot open Service Control Manager on

computer 'Test1-

 Win2k12'. This operation might require other privileges.

 At line:1 char:1
 + Get-Service -ComputerName Test1-Win2k12

 + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 + CategoryInfo : NotSpecified: (:) [Get-

 Service], InvalidOperationException

 + FullyQualifiedErrorId :

System.InvalidOperationException,Microsoft.PowerShe

 ll.Commands.GetServiceCommand

 To get rid of the authentication issue, lots of the cmdlets

provide support for the -Credential parameter, the destination

server credentials. As an example, take the cmdlet called Copy-

Item. This contains the -Credential parameter, and the command

will work if you pass the credentials for the remove server directly:

 Copy-Item 'C:\Temp\Encoding Time.csv' -Destination \\Test1-

Win2k12\C$\Temp -

 Credential $creds
 However, not all commands, like Get-Process, Get-Service, etc.,

have support for the -Credential parameter, so you will need to

use the methods we talk about below.

Invoke-Command Method

This is one of the more convenient of all the methods for

processing commands on remote computers. To remotely run the

commands, a computer name and a script block are required:

 Invoke-Command -ComputerName Test1-Win2k12 -

ScriptBlock{Get-Service Spooler}

 PS C:\Users\Administrator> Invoke-Command -ComputerName

Test1-Win2k12 -

 ScriptBlock{Get-Service Spooler}
 Status Name DisplayName

PSComputerName

——— —— ————-— ———————

Running Spooler Print Spooler Test1-Win2k12

 Here, we have assumed that Test1-Win2k12 is in the same

domain, so we don’t need to add any more credentials for a

remote server connection. If it were in a different workgroup or

domain, you would need to add the -Credential parameter, which

is supported by Invoke-Command. Here’s an example:

 $creds = Get-Credential
 Invoke-Command -ComputerName Test2-Win2k12 -

ScriptBlock{Get-Service Spooler} -

 Credential $creds
 Output

 Status Name DisplayName

PSComputerName

——— —— ————-— ———————

Running Spooler Print Spooler Test2-Win2k12

The PSSession Method

The PSSession method gives you a choice – entering PSSession to

run the command, or, using a session variable to store the

session and passing that variable to allow the command to

remotely run.

Enter-PSSession cmdlet

 With the Enter-PSSession cmdlet, a direct connection to a

domain is possible to connect all the computers, or you can use

the -Credential parameter to provide the relevant credentials in the

cmdlet for the computers in the different workgroup or domain.

 For Domain-joined Computers

 Enter-PSSession Test1-Win2k12

 When the command is run with the computer name, you will

see the computer name is in the front of the path. This tells you

that you are in the Remote Shell and the command can be run.

 The output from the above is:

 PS C:\Users\Administrator> Enter-PSSession Test1-Win2k12

 [Test1-Win2k12]: PS

C:\Users\Administrator.LABDOMAIN\Documents>

 [Test1-Win2k12]: PS

C:\Users\Administrator.LABDOMAIN\Documents> Get-Service

 Spooler
 Status Name DisplayName

——— —— —————-

Running Spooler Print Spooler

 If the computer is in another workgroup, the credentials must

be passed in the cmdlet, like this:

 Enter-PSSession Test2-Win2k12 -Credential (Get-Credential)

 And the output is:
 [Test2-Win2k12]: PS C:\Users\Administrator\Documents>

Hostname

 Test2-Win2k12

 The Exit-PSSession command is used to end a session.

The Session Variable

 The session variable can be used for remotely connecting to

the server, and you will need the New-PSSession cmdlet with the

name of the remote computer for this. That session needs to be

stored in the variable which can then be used by the cmdlet that

is supported, such as Enter-PSSession or Invoke-Command.

 For example:

 $sess = New-PSSession Test1-Win2k12

 When you look at the $sess variable value, you will see it can

be used for retrieving the cmdlet output on the Test1-Win2k12

machine:

 Invoke-Command -Session $sess -ScriptBlock{Get-Service

Spooler}

 PS C:\Users\Administrator> Invoke-Command -Session $sess -

ScriptBlock{Get-

 Service Spooler}
 Status Name DisplayName

PSComputerName

——— —— ————-— ———————

Running Spooler Print Spooler Test1-Win2k12

Conclusion

Thank you for taking the time to read this guide, “PowerShell: A

Comprehensive Guide to Windows PowerShell,” I hope that you

found it useful.

 Of course, there is much more to PowerShell than what I have

written here but I have covered the basics of what you need to

know. Scripts and cmdlets are the backbone of PowerShell and

once you understand them and know how to write them, well, the

world is your oyster.

 Learning PowerShell means saving you time in administration

tasks and money in staff hours having to do those tasks.

Automate the everyday tasks and your time is freed up to

concentrate on the big stuff!

 This is just a stepping stone, a guide for you to refer to
whenever you are unsure. Microsoft provides plenty of backup and

system support and are one of the best resources for when things

go wrong – make sure you use them.

 Thank you once again for reading this and good luck on your
PowerShell journey – once you use it, you will never look back.

	Start

